Search results for "iridium oxide"
showing 4 items of 4 documents
Nanostructured Ni Based Anode and Cathode for Alkaline Water Electrolyzers
2019
Owing to the progressive abandoning of the fossil fuels and the increase of atmospheric CO2 concentration, the use of renewable energies is strongly encouraged. The hydrogen economy provides a very interesting scenario. In fact, hydrogen is a valuable energy carrier and can act as a storage medium as well to balance the discontinuity of the renewable sources. In order to exploit the potential of hydrogen it must be made available in adequate quantities and at an affordable price. Both goals can be potentially achieved through the electrochemical water splitting, which is an environmentally friendly process as well as the electrons and water are the only reagents. However, these devices stil…
Optical properties of zinc-iridium oxide thin films
2019
We present the results of an investigation of ultraviolet, visible, near-infrared (UV-Vis-NIR) and X-ray absorption spectroscopy absorption spectra for zinc-iridium oxide (Zn-Ir- O) thin films with various iridium concentrations deposited by reactive DC magnetron sputtering. It is found that the absorption spectra of zinc-iridium oxide thin films contain a broad band with maxima at 446 nm and 710 nm in the visible region, bands with maxima at about 1100 nm and 3300 nm, and a low-intensity absorption band at 1570 nm in the near-infrared region. The obtained absorption bands are associated with iridium ions at valences of Ir3+, Ir4+ and Ir5+. Changes in the oxidation state of iridium ions fro…
Supported iridium catalysts for the total oxidation of short chain alkanes and their mixtures: Influence of the support
2021
13 figures, 3 tables.-- Supplementary information available.-- © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Fabrication and characterization of nanostructured Ni–IrO2 electrodes for water electrolysis
2014
Abstract Nanostructured Ni–IrO2 electrodes were fabricated by electrodeposition in a two-step procedure: first arrays of nickel nanowires (NWs) were electrodeposited within pores of polycarbonate (PC) membranes, then iridium oxide nanoparticles were deposited on the Ni metal after membrane dissolution, for improving the catalytic activity. The aim was to compare performance of these electrodes with traditional ones consisting of Ni film. Different methods of deposition of the IrO2 electrocatalyst were investigated and the effect on electrodes stability and activity is discussed. Despite a low coverage of Ni NWs by the electrocatalyst, results indicate a faster kinetics of O2 evolution in 1 …